BACCALAURÉAT GÉNÉRAL Session 2014

MATHÉMATIQUES

- Série ES -

ENSEIGNEMENT DE SPÉCIALITÉ

Durée de l'épreuve : 3 heures

Coefficient: 7

Les calculatrices électroniques de poche sont autorisées, conformément à la réglementation en vigueur.

Le sujet est composé de 4 exercices indépendants. Le candidat doit traiter tous les exercices. Dans chaque exercice, le candidat peut admettre un résultat précédemment donné dans le texte pour aborder les questions suivantes, à condition de l'indiquer clairement sur la copie. Le candidat est invité à faire figurer sur la copie toute trace de recherche, même incomplète ou non fructueuse, qu'il aura développée.

Il est rappelé que la qualité de la rédaction, la clarté et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.

Avant de composer, le candidat s'assurera que le sujet comporte bien 7 pages numérotées de 1 à 7.

EXERCICE 1 (5 points)

Commun à tous les candidats

Une grande entreprise vient de clôturer sa campagne de recrutement qui s'est déroulée en deux temps :

- premier temps : étude du dossier présenté par le candidat ;
- deuxième temps : entretien en vue du recrutement.

Le processus de recrutement mis en œuvre par l'entreprise est le suivant :

- si le dossier est jugé de bonne qualité, alors le candidat est reçu en entretien par le directeur des ressources humaines ;
- si le dossier n'est pas jugé de bonne qualité, alors le candidat subit des tests puis est reçu en entretien par le directeur de l'entreprise.

Dans les deux cas, à l'issue de l'entretien, le candidat est recruté ou ne l'est pas.

À l'issue de cette campagne de recrutement, l'entreprise publie les résultats suivants :

- 30 % des candidats avaient un dossier jugé de bonne qualité;
- 20 % des candidats n'ayant pas un dossier jugé de bonne qualité ont été recrutés ;
- 38 % des candidats ont été recrutés.
- 1) On prend un candidat au hasard et on note :
 - D l'événement « le candidat a un dossier jugé de bonne qualité » ;
 - R l'événement « le candidat est recruté par l'entreprise ».
 - a) Représenter cette situation à l'aide d'un arbre pondéré.
 - b) Calculer la probabilité que le candidat n'ait pas un dossier de bonne qualité et ne soit pas recruté par l'entreprise.
 - c) Montrer que la probabilité de l'événement D∩R est égale à 0,24.
 - d) En déduire la probabilité qu'un candidat soit recruté sachant que son dossier est jugé de bonne qualité. Compléter l'arbre pondéré réalisé dans la question a).
- 2) Dix personnes postulent pour un emploi dans l'entreprise. Les études de leurs candidatures sont faites indépendamment les unes des autres. On désigne par X la variable aléatoire donnant le nombre de personnes recrutées parmi les 10 personnes.
 - a) Justifier que X suit une loi binomiale de paramètres n = 10 et p = 0.38.
 - b) Calculer la probabilité qu'au moins une des dix personnes soit recrutée. On donnera la valeur exacte puis une valeur du résultat arrondie à 10⁻³.
- 3) Deux amis, Aymeric et Coralie, sont convoqués le même jour pour un entretien avec la direction des ressources humaines.

Coralie arrive à 8h30 alors qu'Aymeric arrive au hasard entre 8h et 9h.

On désigne par T la variable aléatoire donnant l'heure d'arrivée d'Aymeric et on admet que T suit la loi uniforme sur l'intervalle [8; 9].

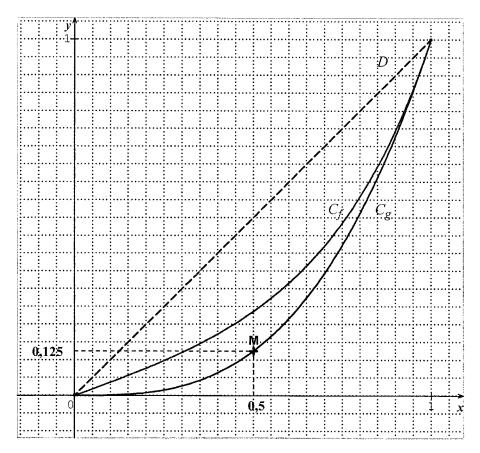
Déterminer la probabilité pour que Coralie attende Aymeric plus de dix minutes.

EXERCICE 2 (6 points)

Commun à tous les candidats

Partie A: Étude d'une fonction

Soit f la fonction définie sur \mathbb{R} par $f(x) = xe^{x^2-1}$. C_f est la courbe représentative de la fonction f dans un repère orthonormé du plan. On note f' la fonction dérivée de f et f'' la fonction dérivée seconde de f.


- 1) a) Montrer que pour tout réel x, $f'(x) = (2x^2 + 1)e^{x^2-1}$.
 - b) En déduire le sens de variation de f sur \mathbb{R} .
- 2) On admet que pour tout réel x, $f''(x) = 2x(2x^2 + 3)e^{x^2-1}$. Déterminer, en justifiant, l'intervalle sur lequel la fonction f est convexe.
- 3) Soit h la fonction définie sur \mathbb{R} par $h(x) = x(1 e^{x^2 1})$.
 - a) Justifier que l'inéquation $1 e^{x^2 1} \ge 0$ a pour ensemble de solutions l'intervalle [-1; 1].
 - b) Déterminer le signe de h(x) sur l'intervalle [-1; 1].
 - c) En remarquant que pour tout réel x, on a l'égalité h(x) = x f(x), déduire de la question précédente la position relative de la courbe C_f et de la droite D d'équation y = x sur l'intervalle [0; 1].
- 4) Soit H la fonction définie sur \mathbb{R} par $H(x) = \frac{1}{2}x^2 \frac{1}{2}e^{x^2-1}$ et soit $I = \int_0^1 h(x) dx$.

On admet que H est une primitive de la fonction h sur \mathbb{R} . Calculer la valeur exacte de I.

Partie B: Applications

Sur le graphique suivant, sont tracées sur l'intervalle [0; 1]:

- la courbe C_f représentative de la fonction étudiée en partie A;
- la courbe C_g représentative de la fonction définie par $g(x) = x^3$;
- la droite D d'équation y = x.

Les courbes C_f et C_g illustrent ici la répartition des salaires dans deux entreprises F et G :

- sur l'axe des abscisses, x représente la proportion des employés ayant les salaires les plus faibles par rapport à l'effectif total de l'entreprise;
- sur l'axe des ordonnées, f(x) et g(x) représentent pour chaque entreprise la proportion de la masse salariale (c'est-à-dire la somme de tous les salaires) correspondante.

Par exemple:

Le point M(0,5; 0,125) est un point appartenant à la courbe C_g .

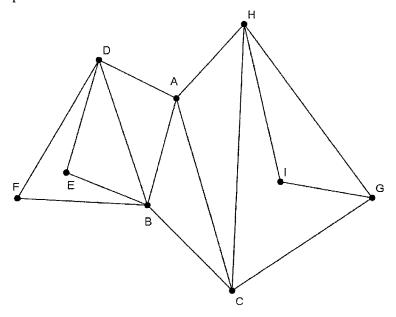
Pour l'entreprise G cela se traduit de la façon suivante :

si on classe les employés par revenu croissant, le total des salaires de la première moitié (c'est-àdire des 50 % aux revenus les plus faibles) représente 12,5 % de la masse salariale.

- 1) Calculer le pourcentage de la masse salariale détenue par 80 % des employés ayant les salaires les plus faibles dans l'entreprise F. On donnera une valeur du résultat arrondie à l'unité.
- 2) On note A_f l'aire du domaine délimité par la droite D, la courbe C_f et les droites d'équations x = 0 et x = 1.

On appelle indice de Gini associé à la fonction f, le nombre réel noté I_f et défini par $I_f = 2 \times A_f$.

- a) Montrer que $I_f = \frac{1}{e}$.
- b) On admet que, plus l'indice de Gini est petit, plus la répartition des salaires dans l'entreprise est égalitaire.


Déterminer, en justifiant, l'entreprise pour laquelle la distribution des salaires est la plus égalitaire.

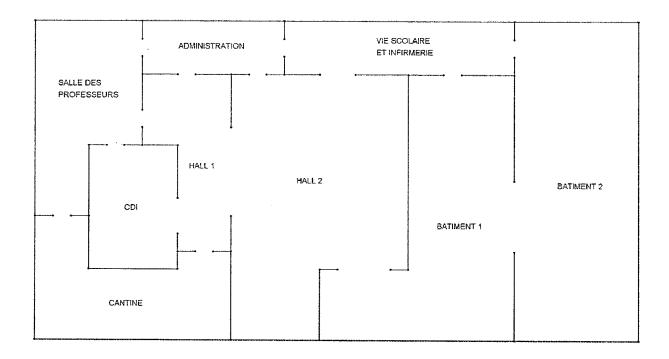
EXERCICE 3 (5 points)

Candidats ayant suivi l'enseignement de spécialité

Partie A: Etude d'un graphe

On considère le graphe & ci-dessous.

- 1) a) Déterminer en justifiant si le graphe \mathscr{G} est complet.
 - b) Déterminer en justifiant si le graphe & est connexe.
- 2) a) Donner le degré de chacun des sommets du graphe %.
 - b) Déterminer en justifiant si le graphe g admet un cycle eulérien ou une chaîne eulérienne.
- 3) a) Donner la matrice M associée au graphe \mathcal{G} (les sommets seront rangés dans l'ordre alphabétique).


$$\mathbf{b)} \text{ On donne}: \mathbf{M}^2 = \begin{pmatrix} 4 & 2 & 2 & 1 & 2 & 2 & 2 & 1 & 1 \\ 2 & 5 & 1 & 3 & 1 & 1 & 1 & 2 & 0 \\ 2 & 1 & 4 & 2 & 1 & 1 & 1 & 2 & 2 \\ 1 & 3 & 2 & 4 & 1 & 1 & 0 & 1 & 0 \\ 2 & 1 & 1 & 1 & 2 & 2 & 0 & 0 & 0 \\ 2 & 1 & 1 & 1 & 2 & 2 & 0 & 0 & 0 \\ 2 & 1 & 1 & 0 & 0 & 0 & 3 & 2 & 1 \\ 1 & 2 & 2 & 1 & 0 & 0 & 2 & 4 & 1 \\ 1 & 0 & 2 & 0 & 0 & 0 & 1 & 1 & 2 \end{pmatrix}.$$

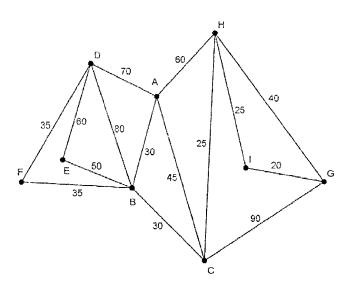
Montrer, par le calcul, que le coefficient de la septième ligne et quatrième colonne de la matrice M³ est égal à 3.

Partie B: Applications

Dans cette partie, on pourra justifier les réponses en s'aidant de la partie A.

On donne ci-dessous le plan simplifié d'un lycée

1) Le graphe $\mathcal G$ donné en partie A modélise cette situation. Recopier et compléter le tableau suivant :


Lieu correspondant dans le lycée	Sommet du graphe ${\mathscr G}$	A	В	C	D	E	F	G	Н	I
	Lieu correspondant dans le lycée									

2) Un élève a cours de mathématiques dans le bâtiment 1. À la fin du cours, il doit rejoindre la salle des professeurs pour un rendez-vous avec ses parents.

Déterminer le nombre de chemins en trois étapes permettant à l'élève de rejoindre ses parents puis indiquer quels sont ces chemins.

- 3) Le lycée organise une journée portes-ouvertes.
 - a) Déterminer, en justifiant, s'il est possible de visiter le lycée en empruntant une seule fois chaque passage entre les différents lieux.

b) Sur les arêtes du graphe 4 sont indiqués les temps de parcours exprimés en seconde entre deux endroits du lycée.

Déterminer, à l'aide de l'algorithme de Dijkstra, le chemin permettant de relier le sommet G au sommet D en un temps minimal.

Déterminer ce temps minimal, exprimé en seconde.

EXERCICE 4 (4 points)

Commun à tous les candidats

L'entreprise Printfactory fabrique, en grande quantité, des cartouches d'encre noire pour imprimante.

Pour chacune des quatre affirmations suivantes, indiquer si elle est vraie ou fausse <u>en justifiant</u> <u>votre réponse</u>.

1) On considère la variable aléatoire X qui, à chaque cartouche produite, associe sa durée de vie exprimée en nombre de pages.

On admet que X suit la loi normale d'espérance $\mu = 250$ et d'écart-type $\sigma = 10$.

- a) Affirmation 1 : Environ 95 % des cartouches produites ont une durée de vie comprise entre 230 et 270 pages.
- b) Affirmation 2 : Moins de 50 % des cartouches produites ont une durée de vie inférieure à 300 pages.
- 2) L'entreprise Printfactory a amélioré son procédé industriel et déclare que 80 % des cartouches produites ont une durée de vie supérieure à 250 pages.

Un contrôleur désigné par l'entreprise effectue un test en prélevant de façon aléatoire un échantillon de cartouches dans la production.

Dans un échantillon de taille 1000, le contrôleur a obtenu 240 cartouches vides d'encre avant l'impression de 250 pages.

Affirmation 3 : Le contrôleur valide la déclaration de l'entreprise.

3) L'entreprise Printfactory souhaite connaître l'opinion de ses 10 000 clients quant à la qualité d'impression de ses cartouches.

Pour cela, elle souhaite obtenir, à partir d'un échantillon aléatoire, une estimation de la proportion de clients satisfaits au niveau 0,95 avec un intervalle de confiance d'amplitude inférieure ou égale à 4 %.

Affirmation 4: L'entreprise doit interroger au moins un quart de ses clients.