Exercice 1: Sur 5 points

Commun à tous les candidats

1. VRAI

A $(2, 4, 1) : 2 \times 2 + 2 \times 4 - 1 - 11 = 0$ B $(0, 4, -3) : 2 \times 0 + 2 \times 4 + 3 - 11 = 0$ C $(3, 1, -3) : 2 \times 3 + 2 \times 1 + 3 - 11 = 0$

Les points A, B et C appartiennent au plan d'équation 2x + 2y - z - 11 = 0. Comme un plan est défini par 3 points, le plan (ABC) a pour équation 2x + 2y - z - 11 = 0.

2. FAUX

E (3, 2, -1): $2 \times 3 + 2 \times 2 + 1 - 11 = 0$ donc $E \in (ABC)$ D (1, 0, -2): $2 \times 1 + 2 \times 0 + 2 - 11 \neq 0$, donc $D \notin (ABC)$ $\overrightarrow{DE} \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix}$

Un vecteur normal au plan (ABC) est \overrightarrow{n} $\begin{pmatrix} 2 \\ 2 \\ -1 \end{pmatrix}$ d'après l'équation du plan.

Les vecteurs \overrightarrow{DE} et \overrightarrow{n} ne sont pas colinéaires, donc \overrightarrow{DE} n'est pas un vecteur normal au plan (ABC).

Donc E n'est pas le projeté orthogonal de D sur le plan (ABC).

3. VRAI

 $\overrightarrow{AB} \begin{pmatrix} -2 \\ 0 \\ -4 \end{pmatrix}$ est un vecteur de la droite (AB).

 $\overrightarrow{CD} \begin{pmatrix} -2 \\ -1 \\ 1 \end{pmatrix}$ est un vecteur directeur de la droite (CD)

$$\overrightarrow{AB}.\overrightarrow{CD} = -2 \times (-2) + 0 \times (-1) + (-4) \times 1 = 0.$$

Les vecteur \overrightarrow{AB} et \overrightarrow{CD} sont donc orthogonaux et les droites (AB) et (CD) sont orthogonales.

4. FAUX

Soit la droite d dont une représentation paramétrique est : $\begin{cases} x = -1 + 2t \\ y = -1 + t \\ z = 1 - t \end{cases}$

Le point C appartient-il à la droite d?

C(3; 1; -3) $\begin{cases} 3 = -1 + 2t \\ 1 = -1 + t \\ -3 = 1 - t \end{cases} \Leftrightarrow \begin{cases} t = 2 \\ t = 2 \end{cases}$ Ce système n'a pas de solution, donc le point C

n'appartient pas à la droite d.

5) VRAI

$$\overrightarrow{AB} \begin{pmatrix} -2\\0\\-4 \end{pmatrix}$$
 et $\overrightarrow{AI} \begin{pmatrix} -\frac{7}{5}\\0\\-\frac{14}{5} \end{pmatrix}$ on $a : \overrightarrow{AB} = \frac{10}{7} \overrightarrow{AI}$

Les vecteurs \overrightarrow{AB} et \overrightarrow{AI} sont colinéaires Le point I est sur la droite (AB).

Exercice 2: Sur 5 points

Commun à tous les candidats

1. a.
$$f(x) = x^2 e^{1-x}$$

$$\lim_{x \to -\infty} x^2 = +\infty$$

$$\lim_{x \to -\infty} (1 - x) = +\infty \text{ et } \lim_{x \to +\infty} e^x = +\infty \text{ donc par composition } \lim_{x \to -\infty} e^{1 - x} = +\infty$$

Donc par produit : $\lim_{x \to -\infty} f(x) = +\infty$

• Limite en $+ \infty$

$$f(x) = e \times x^2 e^{-x}$$

$$\lim_{x \to +\infty} x^2 e^{-x} = 0$$

Donc:
$$\lim_{x \to 0} f(x) = 0$$

La droite d'équation y = 0 est donc asymptote horizontale à la courbe C.

b. La fonction $x \mapsto x^2$ est dérivable sur \mathbb{R}

La fonction $x \mapsto 1 - x$ est dérivable sur \mathbb{R} et la fonction exponentielle est aussi dérivable sur \mathbb{R} donc par composition de fonction dérivable sur \mathbb{R} , la fonction $x \mapsto e^{1-x}$ est dérivable sur \mathbb{R}

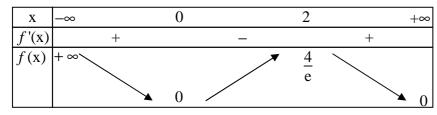
Par produit de fonction dérivable sur \mathbb{R} , f est dérivable sur \mathbb{R}

Pour tout x de
$$\mathbb{R}$$
, $f'(x) = 2xe^{1-x} + x^2 \times (-e^{1-x})$
 $f'(x) = x(2-x)e^{1-x}$.

c. Une exponentielle étant toujours positive, f'(x) est du signe de x(2-x). Faisons un tableau de signe pour étudier le signe x(2-x):

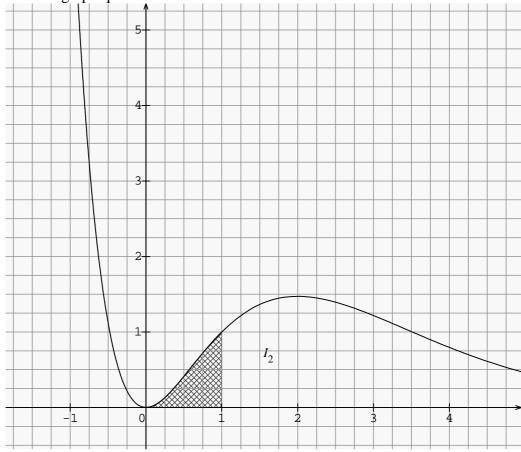
X	-∞	0		2	+∞
Signe de 2 – x	+	-	+	0	-
Signe de x	-	- 0	+		+
Signe de $x(2-x)$	-	- 0	+	0	_

Tableau de variation de f:



$$f(0) = 0$$
 et $f(2) = 4e^{-1} = \frac{4}{e}$

Représentation graphique :



$$I_n = \int_0^1 x^n e^{1-x} dx$$

a. Soit n un entier naturel non nul

$$I_{n+1} = \int_0^1 x^{n+1} e^{1-x} dx$$

Soient u et v deux fonctions définie sur [0; 1] par : Soit $u'(x) = e^{1-x}$ et $v(x) = x^{n+1}$ Alors $u(x) = -e^{1-x}$ et $v'(x) = (n+1)x^n$

Soit
$$u'(x) = e^{1-x}$$
 et $v(x) = x^{n+1}$

Alore
$$y(y) = -e^{1-x}$$
 et $y'(y) = (n + 1)y^n$

Effectuons une intégration par parties sur $I_{n\,+\,1}$:

Donc
$$I_{n+1} = [-x^{n+1}e^{1-x}]_0^1 - \int_0^1 (-(n+1)x^n e^{1-x}) dx$$

$$I_{n+1} = -1 + (n+1) I_n$$

b.

$$I_1 = \int_0^1 x e^{1-x} dx$$

Soient u et v deux fonctions définie sur [0; 1] par : Soit $u'(x) = e^{1-x}$ et v(x) = x

Soit
$$u'(x) = e^{1-x} et v(x) = x$$

Alors
$$u(x) = -e^{1-x}$$
 et $v'(x) = 1$

Effectuons une intégration par parties sur I₁:

Donc
$$I_1 = [-xe^{1-x}]_0^1 - \int_0^1 -e^{1-x} dx$$

= $-1 - [e^{1-x}]_0^1$
= $-1 - 1 + e$
 $I_1 = e - 2$

D'après la relation de la question précédente :

$$I_2 = -1 \, + \, 2\,I_1$$

$$=-1+2e-4$$

$$I_2 = 2e - 5$$

c.
$$I_2 = \int_0^1 x^2 e^{1-x} dx = \int_0^1 f(x) dx$$
.

Sur [0; 1], f(x) est positive.

 I_2 représente l'aire (en unité d'aire) de la partie du plan délimité par la courbe C, l'axe des abscisses et les droites d'équations x = 0 et x = 1.

3.a.

Pour tout nombre réel x de [0 ; 1] et pour tout entier naturel n non nul :

On a:
$$0 \le x \le 1$$

$$-1 \le -x \le 0$$

$$0 \le 1 - x \le 1$$

$$e^0 \le e^{1-x} \le e^1$$
 car exp est croissante sur [0; 1]

$$\mathbf{x}^{\mathbf{n}} \le \mathbf{x}^{\mathbf{n}} \mathbf{e}^{1-\mathbf{x}} \le \mathbf{e} \mathbf{x}^{\mathbf{n}} \quad \text{car } \mathbf{x}^{\mathbf{n}} > 0$$

b. Pour tout nombre réel x de [0; 1] et pour tout entier naturel n non nul : $x^n \le x^n e^{1-x} \le ex^n$

Par passage à l'intégrale : $\int_0^1 x^n dx \le \int_0^1 x^n e^{1-x} dx \le \int_0^1 ex^n dx$

$$\left[\frac{x^{n+1}}{n+1}\right]_0^1 \le I_n \le \left[\frac{ex^{n+1}}{n+1}\right]_0^1$$

$$\frac{1}{n+1} \le I_n \le \frac{e}{n+1}.$$

On a
$$\lim_{n \to +\infty} \frac{1}{n+1} = \lim_{n \to +\infty} \frac{e}{n+1} = 0$$

D'après le théorème des gendarmes: $\lim_{n \to +\infty} I_n = 0$

Exercice 3 : candidats n'ayant pas suivi l'enseignement de spécialité (sur 5 points)

1. Question de cours

a. Soient z et z' deux nombres complexes non nuls :

•
$$\arg(1) = \arg\left(z \times \frac{1}{z}\right) = \arg z + \arg\left(\frac{1}{z}\right) \operatorname{donc} \arg\left(\frac{1}{z}\right) = \arg 1 - \arg z$$

de plus $\arg 1 = (\overrightarrow{u}, \overrightarrow{u}) = 0$ [2π]
donc $\arg\left(\frac{1}{z}\right) = -\arg z$

•
$$\operatorname{arg}\left(\frac{z}{z'}\right) = \operatorname{arg}\left(z \times \frac{1}{z'}\right) = \operatorname{arg}z + \operatorname{arg}\left(\frac{1}{z'}\right)[2\pi]$$

= $\operatorname{arg}z - \operatorname{arg}z'[2\pi].$

Ce qui démontre a propriété.

b.

Soit A, B, C trois points du plan, deux à deux distincts, d'affixes respectives a, b, c. c – a est l'affixe du vecteur \overrightarrow{AC} b – a est l'affixe du vecteur \overrightarrow{AB}

D'après la propriété démontrée précédemment :

$$\begin{split} Arg\left(\frac{c-a}{b-a}\right) &= arg\left(c-a\right) - arg\left(b-a\right)\left[2\pi\right]. \\ &= \left(\overrightarrow{u},\overrightarrow{AC}\right) - \left(\overrightarrow{u},\overrightarrow{AB}\right)\left[2\pi\right]. \\ &= \left(\overrightarrow{u},\overrightarrow{AC}\right) + \left(\overrightarrow{AB},\overrightarrow{u}\right)\left[2\pi\right]. \\ &= \left(\overrightarrow{AB},\overrightarrow{AC}\right)\left[2\pi\right]. \end{split}$$

Ce qui démontre la propriété.

2. a. Pour tout
$$z \neq 0$$
 arg $z' = \arg\left(\frac{1}{z}\right)[2\pi]$.

$$= -\arg\left(\overline{z}\right)[2\pi].$$

$$= -(-\arg z)[2\pi].$$

$$\arg z' = \arg z[2\pi].$$

$$\operatorname{arg} z' = \operatorname{arg} z [2\pi] \Leftrightarrow (\overrightarrow{u}, \overrightarrow{OM'}) = (\overrightarrow{u}, \overrightarrow{OM}) [2\pi].$$

Les points M et M' appartiennent donc à une même demi-droite d'origine O privée du point O.

b. Pour tout
$$z \neq 0$$
, $f(M) = M \Leftrightarrow z' = z$

$$\Leftrightarrow \frac{1}{z} = z$$

$$\Leftrightarrow z \overline{z} = 1$$

$$\Leftrightarrow |z| = 1 \qquad \text{car } z \overline{z} = |z|^2$$

$$\Leftrightarrow OM = 1.$$

L'ensemble des points M de $P\setminus\{O\}$ tels que f(M) = M est le cercle de centre O et de rayon 1.

c. M est un point du plan P distinct de O, U, et V, on admet que M' est aussi distinct de O, U,

$$\frac{z'-1}{z'-i} = \frac{\frac{1}{z}-1}{\frac{1}{z}-i} = \frac{1-\frac{z}{z}}{1-i\frac{z}{z}}$$

$$= \frac{-(z-1)}{-i(i+z)}$$

$$= \frac{1}{i} \left(\frac{z-1}{z+i} \right)$$

$$= -i \left(\frac{z-1}{z-i} \right)$$

$$= -i \left(\frac{z-1}{z-i} \right)$$
On a bien l'égalité : $\frac{z'-1}{z'-i} = \frac{1}{i} \left(\frac{z-1}{z+i} \right) = -i \left(\frac{z-1}{z-i} \right)$

On a bien l'égalité :
$$\frac{z'-1}{z'-i} = \frac{1}{i} \left(\frac{\overline{z}-1}{\overline{z}+i} \right) = -i \left(\frac{\overline{z-1}}{z-i} \right)$$

$$\arg \frac{z'-1}{z'-i} = \arg \left[-i \left(\frac{z-1}{z-i} \right) \right] [2\pi]$$

$$= \arg (-i) + \arg \left(\frac{z-1}{z-i} \right) [2\pi]$$

$$= -\frac{\pi}{2} - \arg \frac{z-1}{z-i} [2\pi]$$

donc
$$\arg \frac{z'-1}{z'-i} = = -\frac{\pi}{2} - \arg \frac{z-1}{z-i} [2\pi]$$

3.

a. Soit z un nombre complexe tel que $z \neq 1$ et $z \neq i$ et soit M le point d'affixe z.

M est sur la droite (UV) privée de U et de $V \Leftrightarrow \overrightarrow{MU}$ et \overrightarrow{MV} sont colinéaires

$$\Longleftrightarrow 1-z=k\;(i-z)\;avec\;k\;r\acute{e}el\;non\;nul$$

$$\Leftrightarrow \frac{z-1}{z-i} = k, k \neq 0$$

$$\Leftrightarrow \frac{z-1}{z-i}$$
 est un réel non nul

b. Soit M sur la droite (UV) privée de U et de V alors $\frac{z-1}{z-i}$ est un réel non nul.

Donc arg
$$\frac{z-1}{z-i} = 0$$
 [π]

Par conséquent : arg
$$\frac{z'-1}{z'-i} = (\overrightarrow{VM}', \overrightarrow{UM}') = -\frac{\pi}{2} [\pi]$$

Le point M' est sur le cercle de diamètre [UV] privé des points U et V.

L'image par f de la droite (UV) privée de U et de V est le cercle de diamètre [UV] privé de U et V.

Exercice 3 : candidats ayant suivi l'enseignement de spécialité (sur 5 points)

Partie A: Question de cours

1. Théorème de Bézout :

Deux entiers relatifs a et b sont premiers entre eux si et seulement si il existe des entiers relatifs u et v tels que au + bv = 1.

Théorème de Gauss:

Soient a, b et c trois entiers non nuls.

Si a divise bc et si a est premier avec b alors a divise c.

- 2. On traduit les deux hypothèses :
- il existe un entier relatif k tel que bc = ka
- il existe un couple (u , v) d'entiers relatifs tels que au + bv = 1 d'après le théorème de Bézout.

En multipliant par c, on obtient acu + bcv = c ce qui donne acu + kav = c et par suite a(cu + kv) = c.

Donc a divise c.

Partie B

$$(S)\begin{cases} n \equiv 13(19) \\ n \equiv 6(12) \end{cases}$$

1. • Calculons le PGCD de 19 et 12 par l'algorithme d'Euclide :

$$19 = 12 \times 1 + 7$$

$$12 = 7 \times 1 + 5$$

$$7 = 5 \times 1 + 2$$

$$5 = 2 \times 1 + 1$$

$$2 = 1 \times 2 + 0$$

On trouve PGCD(19,12) = 1. Donc d'après le théorème de Bézout, il existe un couple (u, v) de relatifs tel que 19u + 12v = 1.

• N = 13 × 12v + 6 × 19u

$$\Rightarrow$$
 N = 13 × 12v [19] or 13 × (19u + 12v) = 13 donc 13 × 12v = 13 [19]
(car 12v = 1[19])
N = 13 [19]
 \Rightarrow N = 6 × 19u [12] or 6 × (19u + 12v) = 6 donc 6 × 19u = 6[12]
(car 19u = 1[12])
N = 6 [12]

Donc N est solution de (S)

2. a. Soit
$$n_0$$
 solution de (S). On a donc
$$\begin{cases} n_0 \equiv 13(19) \\ n_0 \equiv 6(12) \end{cases}$$
 Comme
$$\begin{cases} n \equiv 13(19) \\ n \equiv 6(12) \end{cases}$$
 on a donc
$$\begin{cases} n \equiv n_0 \equiv 13(19) \\ n \equiv n_0 \equiv 6(12) \end{cases}$$
, donc (S) \Leftrightarrow
$$\begin{cases} \mathbf{n} \equiv \mathbf{n_0} \ (\mathbf{19}) \\ \mathbf{n} \equiv \mathbf{n_0} \ (\mathbf{12}) \end{cases}$$

$$\begin{aligned} \textbf{b.} & \begin{cases} n \equiv n_0 \ (19) \\ n \equiv n_0 \ (12) \end{cases} \Leftrightarrow \begin{cases} n - n_0 = k \times 19 \\ n - n_0 = k' \times 12 \\ \Leftrightarrow k \times 19 = k' \times 12 \\ \Leftrightarrow \begin{cases} k' = 19 \times k'' \\ k = 12 \times k'' \end{cases} & \text{(D'après le théorème de Gauss et PGCD } (19 \ ; \ 12) = 1) \\ \text{D'où } n - n_0 = 19 \times 12 \times k'' & \Leftrightarrow \textbf{n} \equiv \textbf{n}_0 \ [\textbf{19} \times \textbf{12}]. \end{aligned}$$

3. Couple (u , v) solution de 19u + 12v = 1

(1)
$$19 = 12 \times 1 + 7$$

(2)
$$12 = 7 \times 1 + 5$$

(3)
$$7 = 5 \times 1 + 2$$

(4)
$$5 = 2 \times 2 + 1$$

D'où:
$$5-1=2\times2$$

 $7\times2=5\times1\times2+2\times2$ (on multiplie (3) par 2)
 $7\times2=5\times1\times2+5-1$
 $7\times2=5\times3-1$
 $7\times2+1=5\times3$
 $12\times3=7\times1\times3+5\times3$ (on multiplie (2) par 3)
 $12\times3=7\times5+1$
 $12\times3-1=7\times5$
 $19\times5=12\times1\times5+7\times5$ (on multiplie (1) par 5)
 $19\times5=12\times1\times5+12\times3-1$
 $1=19\times(-5)+12\times8$

On peut donc prendre comme couple $(\mathbf{u}, \mathbf{v}) = (-5, 8)$.

Calculons N : N =
$$13 \times 12v + 6 \times 19u = 678$$

b. • Cherchons d'abord une solution particulière de (S).

N est solution de (S) d'après 1..

$$n_0 = N = 678$$
 est solution de (S).

• D'après **2. b.**
$$n \equiv n_0$$
 [19 ×12]. $\Leftrightarrow n \equiv 678$ [19 ×12] $\Leftrightarrow n \equiv -6$ [12 × 19]

$$S = \{ 678 + 228k, k \in \mathbb{Z} \}$$

4. n , un entier naturel est tel que
$$\begin{cases} n = 12k + 6 \\ n = 19k' + 13 \end{cases} \Rightarrow \begin{cases} n \equiv 13(19) \\ n \equiv 6(12) \end{cases} \Rightarrow n \equiv 678[12 \times 19].$$
 Or $678 = 228 \times 2 + 222$

Le reste de la division de n par 228 est donc $\mathbf{r} = 222$.

Exercice 4: Sur 5 points

1. a. La probabilité de crever le ballon est de 0,2, donc la probabilité de le laisser intact est de 1-0,2=0,8.

Il doit donc le laisser intact aux deux tirs : $p = 0.8 \times 0.8 = 0.64$

La probabilité que au bout de deux tirs le ballon soit crevé, est de **0,64.**

b. Pour que 2 tirs suffisent pour crever le ballon, il faut

soit réussir au premier tir

soit rater le premier tir et réussir le deuxième.

Donc $p = 0.2 + 0.8 \times 0.2 = 0.36$

La probabilité que deux tirs suffisent pour crever le ballon est de 0,36.

c. L'événement contraire de « il suffit de n tirs pour crever le ballon », (au moins un tir réussi sur le n) est « aucun tir réussi ».

La probabilité qu'il n'y ait aucun tir de réussi sur les n tir est de 0,8ⁿ

Donc: $p_n = 1 - (0.8)^n$.

$$\begin{array}{ll} \textbf{d.} & p_n > 0.99 \\ & 1 - (0.8)^n > 0.99 \\ & - (0.8)^n > -0.01 \\ & (0.8)^n < 0.01 \\ & n \ln 0.8 < \ln 0.01 \\ & n > \frac{\ln 0.01}{\ln 0.8} \quad (car \ln 0.8 < 0) \\ & n > 20.63 \end{array}$$

Donc pour $n \ge 21$, $p_n > 0.99$.

2. Le dé est régulier donc il y a donc équiprobabilité que le dé tombe sur chaque face.

Cette probabilité est $\frac{1}{4}$.

Cas où le dé tombe sur face 1 : Le tireur n'a qu'un tir (qu'il doit réussir)

$$q_1 = \frac{1}{4} \times 0.2 = 0.05$$

Cas où le dé tombe sur face 2 : Le tireur n'a que 2 tirs

$$q_2 = \frac{1}{4} \times 0.36 = 0.09$$

Cas où le dé tombe sur face 3 : Le tireur n'a que 3 tirs

$$q_3 = \frac{1}{4} \times (1 - (0.8)^3) = 0.122$$

Cas où le dé tombe sur face 4 : Le tireur n'a que 4 tirs

$$q_4 = \frac{1}{4} \times (1 - (0.8)^4) = 0.1476$$

Si le dé est équilibré, la probabilité de crever le ballon est donc

$$0.05 + 0.09 + 0.122 + 0.1476 = 0.4096$$
.

3.

Face k	1	2	3	4
Nombre de sorties de la face k	58	49	52	41
Fréquence de sortie f _k	0,29	0,245	0,26	0,205

b.
$$d^2 = \sum_{k=1}^{4} \left(f_k - \frac{1}{4} \right)^2 = \left(f_1 - \frac{1}{4} \right)^2 + \left(f_2 - \frac{1}{4} \right)^2 + \left(f_3 - \frac{1}{4} \right)^2 + \left(f_4 - \frac{1}{4} \right)^2$$

$$= (0.29 - 0.25)^2 + (0.245 - 0.25)^2 + (0.26 - 0.25)^2 + (0.205 - 0.25)^2$$

$$= 0.00375$$

Donc $d^2 = 0.00375$.

c. Le neuvième décile D_9 de la série des valeurs simulées de d^2 est 0,00452.

Cela signifie que 90% des valeurs de d^2 obtenues au cours de ces 1 000 simulations sont dans l'intervalle [0; 0,00452].

Comme la valeur observée de d^2 est inférieure à cette valeur seuil de 0,00452 (0,00375 < 0,00452) on peut convenir que le dé n'est pipé avec un risque de 10%.

